Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.12.570971

ABSTRACT

The glucose-6-phosphate dehydrogenase (G6PD) deficiency is X-linked and is the most common enzymatic deficiency disorder globally. It is a crucial enzyme for the pentose phosphate pathway and produces NADPH, which plays a vital role in the regulation of oxidative stress of many cell types. The deficiency of G6PD causes hemolytic anemia, diabetes, cardiovascular and neurological disorders. Notably, the patient with G6PD deficiency was severely affected by SARS-CoV-2 and showed prolonged COVID-19 symptoms, neurological impacts, and high mortality. However, the mechanism of COVID-19 severity in G6PD deficient patients is still ambiguous. Here, using a CRISPR-edited G6PD deficient human microglia cell culture model, we observed a significant reduction in NADPH and an increase in basal reactive oxygen species (ROS) in microglia. Interestingly, the deficiency of the G6PD-NAPDH axis impairs induced nitric oxide synthase (iNOS) mediated nitric oxide (NO) production which plays a fundamental role in inhibiting viral replication. Surprisingly, we also observed that the deficiency of the G6PD-NADPH axis reduced lysosomal acidification, which further abrogates the lysosomal clearance of viral particles. Thus, impairment of NO production and lysosomal acidification as well as redox dysregulation in G6PD deficient microglia altered innate immune response, promoting the severity of SARS-CoV-2 pathogenesis.


Subject(s)
Anemia, Hemolytic , Diabetes Mellitus , Cognitive Dysfunction , Nervous System Diseases , Tooth, Impacted , Aphasia , COVID-19 , Glucosephosphate Dehydrogenase Deficiency
SELECTION OF CITATIONS
SEARCH DETAIL